IAML Blog


A well-known development practice for data scientists involves the definition of machine learning pipelines (aka workflows) to execute a sequence of typical tasks: data normalization, imputation of missing values, outlier elicitation, dimensionality reduction, classification. Scikit-learn provides a pipeline module to automate this process. In this tutorial we will introduce this module, with a particular focus on:


Molti li hanno già chiamati le illusioni ottiche delle reti neurali. In realtà, gli adversarial examples (che potremmo tradurre come "esempi antagonistici") sono un problema esistente per qualsiasi tecnica di machine learning: tramite modifiche impercettibili all'occhio umano, è possibile generare esempi in grado di confondere qualsiasi classificatore, indipendentemente dalla sua accuratezza in fase di training e con altissima probabilità. In pochissimi anni, questi attacchi sono risultati essere

Continue Reading...


Un'esigenza comune per qualsiasi data scientist è quella di combinare in sequenza diverse operazioni sui dati, quali ad esempio normalizzazioni, ripulitura dei valori mancanti, riduzione della dimensionalità, ed ovviamente classificazione. Le pipeline sono un modulo di scikit-learn che permette di automatizzare questo processo, creando algoritmi estremamente sofisticati dalla combinazione di oggetti di base della libreria.

In questo tutorial vediamo co…

Continue Reading...


Per chi è appassionato di deep learning, uno dei problemi principali (paradossalmente) è diventato districarsi nell'enormità di software disponibili. Fra le alternative più comuni troviamo sicuramente TensorFlow, rilasciato in open-source da Google nel 2015, e PyTorch, rilasciato poco più di un anno dopo da Facebook.

A prima vista, entrambi i framework sono molto simili, dando la possibilità di sviluppare modelli enormemente complessi automatizzandone la fase…

Continue Reading...


Per chi osserva la rapida crescita dell'intelligenza artificiale, ed in particolar modo del deep learning, la domanda da un milione di euro (letteralmente) è una sola: quali saranno le prossime applicazioni?

Continue Reading...