IAML Blog


Il calcolo automatico delle derivate è in assoluto "il cuore" di qualsiasi framework di deep learning. Esso permette di rendere completamente automatico (ed efficiente) uno dei meccanismi più complessi nell'uso di reti neurali, la back-propagation. Negli ultimi anni abbiamo visto la diffusione di strumenti di differenziazione automatica (autodiff) sempre più complessi e modulari, di pari passo con i progressi e successi del deep learning. Allo stesso tempo, nonostante la sua importanza, l'autodiff è un tema relativa…

Continue Reading...


In questo articolo vengono descritti i concetti di base della Cluster Analysis ed alcuni tra gli algoritmi più importanti e rappresentativi delle tecniche principali ad oggi utilizzate. Lo scopo è quello di far comprendere la finalità della suddivisione in cluster ed i meccanismi che si celano dietro la loro costruzione.